PhD Defense by Alex Bryant

THE SCHOOL OF MATERIALS SCIENCE AND ENGINEERING

 

GEORGIA INSTITUTE OF TECHNOLOGY

 

Under the provisions of the regulations for the degree

DOCTOR OF PHILOSOPHY

on Thursday, May 24th, 2018

10:00 AM
in MRDC 3515

 

will be held the

 

DISSERTATION DEFENSE

for

 

Alex Bryant

 

"Shock Compression Induced Phase Changes in Cerium-Based Metallic Glass"

 

Committee Members:

 

Prof. Naresh Thadhani, Advisor, MSE

Prof. Faisal Alamgir, MSE

Prof. Josh Kacher, MSE

Prof. Arun M. Gokhale, MSE

Dr. Christopher Wehrenberg, LLNL

 

Abstract:

 

The research performed in this work was aimed at investigating pressure-induced phase changes in a Ce-based metallic glass (MG) through the use of laser-driven shock experiments and atomic resolution structural characterization. MGs exhibit very high strength, have intrinsically low density, and plastically deform by shear banding. MGs are also metastable and can undergo phase changes upon heating and/or application of high pressure into higher density configurations. The atomic structure changes concomitant with these phase transitions occurring during high pressure shock compression are not well understood, which provides the motivation for the present work.

 

In this work, thermal analysis of Ce3Al MG melt-spun ribbons was first performed to characterize the crystallization response and structure. Ce3Al MG was found to strongly resist growth of crystallites

but easily nucleate. Thermal crystallization occurs via a two-stage primary path wherein a metastable phase forms and converts fully into the hexagonal-intermetallic α-Ce3Al. The Avrami number and dimensionality constants indicate the crystallization occurs via plate-like growth, resulting in thermally crystallized grains on the order of 6 nm and a density ~4% greater than the reference α-Ce3Al.

 

Shock compression experiments performed using the Nd:YAG 3 J laser and velocity interferometry allowed for in operando measurements of particle velocity coupled with sample recovery for structural analysis. The results provide a clear indication of the Hugoniot Elastic Limit (at ≈ 1.8 GPa) as evidenced by the presence of a two wave structure to the velocity profile. At shock pressures exceeding the elastic limit, plastic deformation of the Ce3Al MG occurs via structural transformation to the crystalline state forming α-Ce3Al with nanocrystalline grain sizes, higher densities, and plate-like growth. The trends suggest that shock compression causes break-up of grains, higher densities due to Ce 4f delocalization, and increased preferred orientation.

 

Shock compression experiments were also performed using the 50 J Omega laser facility at the Laboratory for Laser Energetics. A stack of samples was shock-compressed with pressures progressively decreasing across the stack thickness, resulting in two regimes of recovered samples. Highly deformed and partly damaged samples close to the shock front showed varying degrees of long-range order, medium-range order, and short-range order with distance away from the shock front. Visually undeformed samples showed decreased bond lengths for the nearest-neighbors, second nearest-neighbors, and fourth nearest-neighbors but increased bond lengths for the third nearest-neighbors, with associated densification of ~2-6% in all layers. These changes in the undeformed samples are indicative of polyamorphism. The visually undeformed samples also reveal an increase in magnitude of structural change with increased distance away from the shock-front, up to a maximum beyond which increasing distance decreases the magnitude of the bond length shifts. This trend is indicative of competing effects for densification and dilation, associated with the extreme and complex states generated.

 

Event Details

Date/Time:

  • Thursday, May 24, 2018
    11:00 am - 1:00 pm

Accessibility Information

Per accessibility compliance standards, this page may have links to files that would require the downloading of additional software: